

Called as God's family, we strive to achieve our personal best, by living and learning in Christ.

Department Mission Statement -: All pupils and students at Hagley Catholic High School follow a taught course of Design and Technology. We focus on designing and prototyping but also cover areas relevant to Mathematics, English and Science; our approach is to offer students a practical way to apply their knowledge and skills from across their education, not just from our own subject area. We operate a carousel system in KS3 and deliver projects related to the use of papers and boards, metals, woods, plastics, CAD/CAM and electronics/systems and control. Our focus is on the four core strands of Investigation, Designing, Making and Testing and Evaluation. In KS4 we offer students the chance to study a GCSE in Design and Technology which offers them the freedom to explore their own thinking and realise their ideas in whatever materials best suit their final prototypes. Our aims are to prepare students for the wider world, to help them to go on to make well-informed choices as they go on to shape the future and to show them how the theory and skills they learn with us, and in their other subjects, can be put to a wider practical use.

Key Stage 2

Knowledge Gained

Through a variety of creative activities, pupils should be taught the knowledge and understanding needed to engage in an iterative process of designing and making. They should work in a range of relevant contexts. They should be taught to use research and develop design criteria to inform the design of innovative, functional, appealing products that are fit for purpose and aimed at particular individuals or groups. They should be shown how to investigate and analyse a range of existing products, how to evaluate their ideas and products against their own design criteria and consider the views of others to improve their work. They should understand how key events and individuals in design and technology have helped shape the world.

Skills Developed

Through a variety of practical activities, pupils should be taught the skills needed to engage in an iterative process of designing and making. They should work in a range of relevant contexts. They should be taught how to generate, develop, model and communicate their ideas through discussion, annotated sketches, cross-sectional and exploded diagrams, prototypes, pattern pieces and computer-aided design. They should be able to select from and use a wider range of tools and equipment to perform practical tasks accurately and be able to select from and use a wider range of materials and components, including construction materials, textiles and ingredients, according to their functional properties and aesthetic qualities. They should apply their understanding of how to strengthen, stiffen and reinforce more complex structures. They should understand and use mechanical systems in their products. They should understand and use electrical systems in their products and apply their understanding of computing to program, monitor and control their products.

Key Stage 3 Knowledge and Skills Requirement (What knowledge and skills do pupils need to gain by the end of year 9?)

Knowledge To Be Built	Skills To Be Developed
When designing and making, pupils should be taught to:	When designing and making, pupils should be taught to:
Design	Design
 use research and exploration, such as the study of different cultures, to identify and understand user needs identify and solve their own design problems and understand how to reformulate problems given to them 	 use research and exploration, such as the study of different cultures, to identify and understand user needs identify and solve their own design problems and understand how to reformulate problems given to them
Evaluate	develop specifications to inform the design of innovative, functional,
 analyse the work of past and present professionals and others to develop and broaden their understanding 	 appealing products that respond to needs in a variety of situations use a variety of approaches [for example, biomimicry and user-centred
 investigate new and emerging technologies 	design] to generate creative ideas and avoid stereotypical responses
 test, evaluate and refine their ideas and products against a 	develop and communicate design ideas using annotated sketches, detailed
specification, taking into account the views of intended users and	plans, 3-D and mathematical modelling, oral and digital presentations
other interested groups	Make
Technical knowledge	• select from and use specialist tools, techniques, processes, equipment and
 understand and use the properties of materials and the 	machinery precisely, including computer-aided manufacture
performance of structural elements to achieve functioning solutions	select from and use a wider, more complex range of materials, components
 understand how more advanced mechanical systems used in their 	and ingredients, taking into account their properties
products enable changes in movement and force	Evaluate
 understand how more advanced electrical and electronic systems 	analyse the work of past and present professionals and others to develop
can be powered and used in their products	and broaden their understanding
 apply computing and use electronics to embed intelligence in 	investigate new and emerging technologies
products that respond to inputs and control outputs using	• test, evaluate and refine their ideas and products against a specification,
programmable components	taking into account the views of intended users and other interested groups

Key Stage 4 Knowledge and Skills Requirement (What knowledge and skills do pupils need to gain by the end of year 11?)

Knowledge To Be Built	Skills To Be Developed
The impact of new & emerging technologies	Understanding design contexts
How new & emerging technologies inform design decisions	Identifying client & user needs
Energy	Design Brief & Specification
Modern & Smart materials	Environmental, social & economic factors
Electronic systems	Developing ideas
Programmable components	 Testing, analysing & evaluating ideas
Mechanisms	 Investigate & analyse the work of past & present designers
Papers & boards	Using different design strategies
Natural & manufactured timber	Design communication & annotation
Ferrous & non-ferrous metals	Designing & developing prototypes
 Thermoforming & thermosetting polymers 	 Decision making, feedback & suggesting modifications
Fabrics & textiles	 Working with appropriate materials & components
 Sources, origins & properties of materials 	 Marking out, measuring & cutting (jigs, templates, etc.)
 Factors affecting material selection 	Using specialist tools & equipment
Forces & stresses	 Using appropriate surface treatments & finishes
Stock forms, types & sizes of materials	 Arithmetic & numerical computation (sizes, scale, quantities)
Manufacturing processes	 Handling data (diagrams, charts, histograms)
 Fabrication, construction & assembly 	 Graphs (presenting, interpreting & translating data)
Surface treatments & finishes	Geometry & trigonometry (measurements, patterns, 2D & 3D, area)
 Using scientific vocabulary (units, symbols, quantities, 	 Using materials (properties, selection, energy, forces)
materials)	
 Life cycle assessment & recycling 	

Curricul	um Plan			
Year	Scheme of Work	Knowledge Gained (Including How It Builds on	Skills Developed ((Including How It	Assessment of knowledge
Group		Previous Knowledge Gained)	Builds on Previous Skills Gained)	and skills
7	Graphics and Design	Graphics and Design	Graphics and Design	In Year 7 students move
		 Health & Safety in a Graphic Design 	 Understanding design contexts 	through a carousel
	This module focuses	room	 Identifying client & user needs 	system, which includes
	on levelling up basic	 Safe use of cutting tools for compliant 	 Use of shade, tone and colour 	Food and Nutrition, where
	drawing skills and	materials	 Design Brief & Specification 	they will spend

techniques, including the use of colour, shade and tone and light sources. It also introduces the safe use of craft knives and other paper and card based cutting tools. We work through the design process and have a particular emphasis on accuracy of measuring and marking out.

Product Design

- This module focuses on metal as a material and introduces students to the use of a basic range of tools and machinery, including pillar drills, files, glasspaper, etc. We use low-temperature casting as a process and have a particular emphasis on workshop safety. Students will

- Target markets and designing with different users in mind
- Knowledge of papers and boards
- Stock forms, types & sizes of materials
- Fabrication, construction & assembly
- Using scientific vocabulary (units, symbols, quantities, materials)
- Using materials (properties, selection, energy, forces)

- **Product Design**
 - Health & Safety in a Product Design room
 - Safe use of cutting and shaping tools, equipment and machinery for resistant materials
 - Ferrous & non-ferrous metals
 - Sources, origins & properties of materials
 - Factors affecting material selection
 - Fabrication, construction & assembly
 - Surface treatments & finishes
 - Using scientific vocabulary (units, symbols, quantities, materials)
 - Using materials (properties, selection, energy, forces)

- Developing ideas
- Using different design strategies
- Design communication & annotation
- Designing & developing prototypes
- Working with appropriate materials & components
- Marking out, measuring & cutting (jigs, templates, etc.)
- Using specialist tools & equipment
- Geometry & trigonometry (measurements, patterns, 2D & 3D, area)

Product Design

- Understanding design contexts
- Identifying client & user needs
- Design Brief & Specification
- Environmental, social & economic factors
- Developing ideas
- Using different design strategies
- Design communication & annotation
- Designing & developing prototypes
- Decision making, feedback & suggesting modifications
- Working with appropriate materials & components

approximately 10 weeks in each subject area. Students will be formatively assessed throughout the module. Students will also be assessed on one task drawn from each of the four strands of Investigation, Design, Make, Test and Evaluate; this will generate their grade for the module. The combined grades from each of the modules will produce their overall grade for their end of Year report.

produce a piece of
personalised
jewellery.

Systems and Control

This module introduces students to the basics of electronic systems, with a focus on Input, Process and Output. We use copper tracks and students will create a personalised door handle hanger with a working circuit as a part of the design. Students will use soldering irons and we also introduce some CAD as a part of the final design.

Systems and Control

- Health & Safety in a Systems & Control room
- Safe use of heating, cutting and shaping tools, equipment and machinery for electronic components and resistant materials
- Electronic systems
- Natural & manufactured timber
- Ferrous & non-ferrous metals
- Thermoforming & thermosetting polymers
- Sources, origins & properties of materials
- Factors affecting material selection
- Stock forms, types & sizes of materials
- Fabrication, construction & assembly
- Surface treatments & finishes
- Arithmetic & numerical computation (sizes, scale, quantities)
- Geometry & trigonometry (measurements, patterns, 2D & 3D, area)

- Marking out, measuring & cutting (jigs, templates, etc.)
- Using specialist tools & equipment
- Using appropriate surface treatments & finishes
- Using materials (properties, selection, energy, forces)

Systems and Control

- Understanding design contexts
- Identifying client & user needs
- Design Brief & Specification
- Environmental, social & economic factors
- Developing ideas
- Using different design strategies
- Design communication & annotation
- Designing & developing prototypes
- Working with appropriate materials & components
- Marking out, measuring & cutting (jigs, templates, etc.)
- Using specialist tools & equipment

This module develops student's understanding of 3D sketching, with a design focus on Isometric drawing and rendering. We also cover 3D modelling and have an Investigation focus on the importance of the work of past and present designers as influences and inspiration for design thinking.	 Using scientific vocabulary (units, symbols, quantities, materials) Life cycle assessment & recycling Using materials (properties, selection, energy, forces) Graphics and Design Stock forms, types & sizes of materials Manufacturing processes Fabrication, construction & assembly Surface treatments & finishes Investigate & analyse the work of past & present designers Arithmetic & numerical computation (sizes, scale, quantities) Using scientific vocabulary (units, symbols, quantities, materials) Using materials (properties, selection, energy, forces) 	Graphics and Design Understanding design contexts Identifying client & user needs Design Brief & Specification Developing ideas Testing, analysing & evaluating ideas Using different design strategies Design communication & annotation Designing & developing prototypes Decision making, feedback & suggesting modifications Working with appropriate materials & components Marking out, measuring & cutting (jigs, templates, etc.) Using specialist tools & equipment Geometry & trigonometry (measurements, patterns, 2D &	In Year 8 students move through a carousel system, which includes Food and Nutrition, where they will spend approximately 10 weeks in each subject area. Students will be formatively assessed throughout the module. Students will also be assessed on one task drawn from each of the four strands of Investigation, Design, Make, Test and Evaluate; this will generate their grade for the module. The combined grades from each of the modules will produce their overall grade for their end of Year report.
This module focuses on wood as a material. Looking at	 Product Design Natural & manufactured timber Stock forms, types & sizes of materials Manufacturing processes 	3D, area) Product Design Understanding design contexts Identifying client & user needs Design Brief & Specification	

tools, equipment,
processes, materials
and quality of finish.
There is also a real
focus on accuracy
and suitability for
purpose.

- Fabrication, construction & assembly
- Surface treatments & finishes
- Arithmetic & numerical computation (sizes, scale, quantities)
- Using materials (properties, selection, energy, forces)

Developing ideas

- Testing, analysing & evaluating ideas
- Design communication & annotation
- Designing & developing prototypes
- Decision making, feedback & suggesting modifications
- Working with appropriate materials & components
- Marking out, measuring & cutting (jigs, templates, etc.)
- Using specialist tools & equipment
- Using appropriate surface treatments & finishes
- Geometry & trigonometry (measurements, patterns, 2D & 3D, area)
- Using scientific vocabulary (units, symbols, quantities, materials)

Systems and Control

This module develops students understanding of electronic components and circuits and moves from copper track to stripboard, as well as

Systems and Control

- Electronic systems
- Thermoforming & thermosetting polymers
- Stock forms, types & sizes of materials
- Manufacturing processes
- Fabrication, construction & assembly
- Surface treatments & finishes
- Arithmetic & numerical computation (sizes, scale, quantities)

Systems and Control

- Understanding design contexts
- Identifying client & user needs
- Design Brief & Specification
- Developing ideas
- Testing, analysing & evaluating ideas
- Design communication & annotation

	introducing L.D.R.s and variable resistors. We also cover CAD and CAM through the use of 2D Design and a CNC router.	Using scientific vocabulary (units, symbols, quantities, materials)	 Designing & developing prototypes Decision making, feedback & suggesting modifications Working with appropriate materials & components Marking out, measuring & cutting (jigs, templates, etc.) Using specialist tools & equipment 	
9	Design and Technology This module is a bridging unit into GCSE Design & Technology. We cover Smart and Modern materials, Biomimetics and Mechanics, along with a CAD/CAM design and make task.	 Design and Technology Impact of new & emerging technologies How new & emerging technologies inform design decisions Modern & Smart materials Mechanisms Sources, origins & properties of materials Forces & stresses Manufacturing processes Fabrication, construction & assembly Using scientific vocabulary (units, symbols, quantities, materials) 	 Design and Technology Understanding design contexts Identifying client & user needs Design Brief & Specification Developing ideas Testing, analysing & evaluating ideas Using different design strategies Design communication & annotation Designing & developing prototypes Decision making, feedback & suggesting modifications Working with appropriate materials & components Marking out, measuring & cutting (jigs, templates, etc.) Using specialist tools & equipment 	In Year 9 students move through a carousel system, which includes Food and Nutrition and Health and Social Care, where they will spend approximately 10 weeks in each subject area. Students will be formatively assessed throughout the module. Students will also be assessed on one task drawn from each of the four strands of Investigation, Design, Make, Test and Evaluate; this will generate their grade for the module. The combined grades from each of the modules will produce their overall

	Systems and Control This unit introduces programming into the elements of electronics that we have already covered. It also covers breadboarding and introduces PCB production.	Systems and Control Impact of new & emerging technologies Electronic systems Programmable components Thermoforming & thermosetting polymers Sources, origins & properties of materials Stock forms, types & sizes of materials Manufacturing processes Fabrication, construction & assembly Arithmetic & numerical computation (sizes, scale, quantities) Using scientific vocabulary (units.	 Arithmetic & numerical computation (sizes, scale, quantities) Geometry & trigonometry (measurements, patterns, 2D & 3D, area) Using materials (properties, selection, energy, forces) Systems and Control Understanding design contexts Identifying client & user needs Design Brief & Specification Developing ideas Testing, analysing & evaluating ideas Designing & developing prototypes Decision making, feedback & suggesting modifications Working with appropriate materials & components Using specialist tools & 	grade for their end of Year report.
	production.	 Arithmetic & numerical computation (sizes, scale, quantities) Using scientific vocabulary (units, symbols, quantities, materials) Using materials (properties, selection, energy, forces) 	 Working with appropriate materials & components Using specialist tools & equipment 	
10	Design and Technology GCSE During Year 10 students will spend the first 2.5 terms working through the	 The impact of new & emerging technologies How new & emerging technologies inform design decisions Energy Modern & Smart materials 	 Understanding design contexts Identifying client & user needs Design Brief & Specification Environmental, social & economic factors Developing ideas 	In Year 10 students will complete a combination of theory and practical lessons. The theory topics are broken down into clear sections and each one has a homework-

theory content of the course and developing the practical skills necessary to attempt the N.E.A and the terminal examination. The theory and practice is delivered using a combination of taught lessons, homeworks and focussed practical tasks. We aim to develop student's ability to use tools, equipment and materials in a variety of resistant and compliant materials, including fabrics, papers and boards, wood, metal, plastic and electronic components and systems. Students then spend the last half term working through their N.E.A. project. This task is set biennially by the exam board.

- Electronic systems
- Programmable components
- Mechanisms
- Papers & boards
- Natural & manufactured timber
- Ferrous & non-ferrous metals
- Thermoforming & thermosetting polymers
- Fabrics & textiles
- Sources, origins & properties of materials
- Factors affecting material selection
- Forces & stresses
- Stock forms, types & sizes of materials
- Manufacturing processes
- Fabrication, construction & assembly
- Surface treatments & finishes
- Using scientific vocabulary (units, symbols, quantities, materials)
- Life cycle assessment & recycling

- Testing, analysing & evaluating ideas
- Investigate & analyse the work of past & present designers
- Using different design strategies
- Design communication & annotation
- Designing & developing prototypes
- Decision making, feedback & suggesting modifications
- Working with appropriate materials & components
- Marking out, measuring & cutting (jigs, templates, etc.)
- Using specialist tools & equipment
- Using appropriate surface treatments & finishes
- Arithmetic & numerical computation (sizes, scale, quantities)
- Handling data (diagrams, charts, histograms)
- Graphs (presenting, interpreting & translating data)
- Geometry & trigonometry (measurements, patterns, 2D & 3D, area)
- Using materials (properties, selection, energy, forces)

based assessment topic. Some of the units also have specific tests to identify where there are gaps in students' knowledge and understanding. The practical tasks are assessed against the relevant parts of the final N.E.A. mark scheme, using a combination of self, peer and teacher assessment, to ensure students understand how the mark scheme works and where they can improve. There will be a formal mock exam towards the end of the year to assess their overall progress and identify any gaps in their knowledge and understanding.

11 Design and Technology GCSE

During Year 11 students will spend the first 2 terms working through their N.E.A. project. This task is set biennially by the exam board. Students spend the third term on revision of learned topics and preparing for and taking their terminal exams.

- The impact of new & emerging technologies
- How new & emerging technologies inform design decisions
- Energy
- Modern & Smart materials
- Electronic systems
- Programmable components
- Mechanisms
- Papers & boards
- Natural & manufactured timber
- Ferrous & non-ferrous metals
- Thermoforming & thermosetting polymers
- Fabrics & textiles
- Sources, origins & properties of materials
- Factors affecting material selection
- Forces & stresses
- Stock forms, types & sizes of materials
- Manufacturing processes
- Fabrication, construction & assembly
- Surface treatments & finishes
- Using scientific vocabulary (units, symbols, quantities, materials)
- Life cycle assessment & recycling
- Arithmetic & numerical computation (sizes, scale, quantities)
- Handling data (diagrams, charts, histograms)
- Graphs (presenting, interpreting & translating data)

- Understanding design contexts
- Identifying client & user needs
- Design Brief & Specification
- Environmental, social & economic factors
- Developing ideas
- Testing, analysing & evaluating ideas
- Investigate & analyse the work of past & present designers
- Using different design strategies
- Design communication & annotation
- Designing & developing prototypes
- Decision making, feedback & suggesting modifications
- Working with appropriate materials & components
- Marking out, measuring & cutting (jigs, templates, etc.)
- Using specialist tools & equipment
- Using appropriate surface treatments & finishes
- Arithmetic & numerical computation (sizes, scale, quantities)
- Handling data (diagrams, charts, histograms)
- Graphs (presenting, interpreting & translating data)

Students N.E.A. work is assessed against the framework provided by the exam board and then externally moderated by the exam board. The project is marked out of 100 and constitutes 50% of the total marks for the course. There will be a formal pre-public exam (usually around Christmas time) to assess students progress and preparedness for the final exam. Students will sit a terminal exam during the summer of Year 11. This exam is one hour and fourty five minutes in length. The exam has two sections; the first section will assess their knowledge of the overall curriculum and is worth 40 marks, the second section will assess their knowledge of a specialist materials area and is worth 60 marks.

Geometry & trigonometry Geometry & trigonometry
 (measurements, patterns, 2D & 3D, area) Using scientific vocabulary (units, symbols, quantities, materials) Life cycle assessment & recycling Using materials (properties, selection, energy, forces) (measurements, patterns, 2D & 3D, area) Using scientific vocabulary (units, symbols, quantities, materials) Life cycle assessment & recycling Using materials (properties, selection, energy, forces)